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Monte Carlo Studies with the ST-IO0 Array Processor 
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Monte Carlo simulations with the 100Mflop ST-100 array processor are 
described. The architecture of the array processor and its applicability to large- 
scale numerical simulations is discussed. Results are presented for the Abelian 
Higgs model, a charge density wave transition in a quasi-one-dimensional 
system and the finite temperature phase transition in SU(3) lattice gauge theory. 
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1. I N T R O D U C T I O N  

As we heard at the conference, Monte Carlo simulations are presently 
being used to study a wide variety of physical phenomena. This field is 
clearly going through a very productive period. One of the major reasons 
for recent progress has been the marked increase in computing power 
available to its practitioners. The increased access to supercomputers has 
been most important, and the development of special purpose computers 
explicitly designed for numerical simulations holds great promise. Another 
development, which has perhaps been less widely noted, is the advent of a 
new generation of computers and array processors that have a significant 
fraction of the speed of a supercomputer but are economical enough so 
that they can be owned and operated by a small group of scientists. I 
believe that these machines can be very useful for large-scale simulations, 
and I would like to describe the experience our group has had with one of 
them, the Star Technologies, Inc. ST-100 array processor. 

The ST-100 that I will describe is operated by a group of University of 
California faculty members: Jorge Hirsch, Julius Kuti, and Doug Toussaint 
of U.C. San Diego, and Doug Scalapino and myself of U.C. Santa Barbara. 
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Our interests are primarily focused on the numerical simulation of field- 
theory problems in condensed matter and high-energy physics. I will dis- 
cuss three of the problems we have studied with the ST-100 during the last 
year: the Abelian Higgs model, the development of correlations in a quasi- 
one-dimensional electron system, and the finite temperature phase trans- 
ition in SU(3) lattice gauge theory. First, however, I will briefly describe 
the ST-100. Numerical simulation is in a real sense an experimental field, 
and it is traditional for an experimentalist to describe new equipment the 
first time he or she uses it. 

2. THE ST-100 A R R A Y  PROCESSOR 

The ST-100 is an attached processor. We use a VAXll/750 as the 
host. All program development including editing, compiling, and linking 
the array processor programs is done on the VAX. In order to run a job on 
the ST-100 one runs a Fortran program on the VAX which prepares data 
for the array processor, sends the data and array processor program to the 
ST-100, and instructs the ST-100 to begin operation. The VAX then con- . 
tinues with other tasks until the array processor signals that it is finished 
and ready to return its results. Typically we use three to four minutes of 
VAX CPU time for each 24 hours of ST-100 operation. The ST-100 and its 
host VAX are located in Santa Barbara. The VAX is connected by a 
dedicated 9600 baud line to a similar computer in San Diego which also 
runs the ST-100 program development software. Thus the San Diego mem- 
bers of the group can do much of their software development on their own 
VAX and send programs to Santa Barbara for final testing and production 
runs on the array processor. 

A schematic diagram of the ST-100 is shown in Fig. 1. It has a large 
main memory, which on our machine consists of 4 million, 32-bit words, 
but which could be expanded to 8 million words. Data can be stored in 
main memory in full words, half words, or bytes. There are four primary 
arithmetic units: two adders and two multipliers. The adders can also per- 
form subtraction, logical operations, and conversion between fixed and 
floating point formats. The adders and multipliers have three-stage 
pipelines, and are each capable Of producing one result per machine cycle. 
Since the cycle time is 40 ns, this comes to 25 million floating-point 
operations per second (25 Mflops) for each unit or a total 100 Mflops if the 
programmer is able to keep all four units in operation. There is also a 
divide/square root unit which is not pipelined and which requires 12 
machine cycles per result. It is, of course, to be avoided whenever possible. 

In order for the arithmetic units to operate on data in main memory, 
the data must first be moved into the cache memory. Cache consists of 
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Fig. 1. A schematic diagram of the ST-IO0 array processor. 

48,000 32-two bit words. It is divided into three sections of equal size, and 
each of these sections can in turn be divided into two subsections. Data 
movement between main memory and cache is controlled by the Storage 
Move Processor (SMP). It is possible to move one word per machine cycle 
to or from main memory. 

The Arithmetic Control Processor (ACP) controls data flow between 
cache and the arithmetic units as well as the operation of these units. It is 
possible to move three words per cycle between cache and the arithmetic 
units, but each word must go to or from a different cache section. It is also 
possible to move output from the arithmetic units directly into their input 
registers without returning it to cache, and to use input data in more than 
one arithmetic operation without rereading it from cache. Given the 
limitation on data flow from cache, this is essential if one is to keep both 
adders and both multipliers in simultaneous operation. 

The overall operation of the ST-100 is managed by the Control 
Processor. It is programmed in Array Processor Control Language 
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(APCL), which is at once a subset and an extension of Fortran. Among the 
extensions is the ability to call subroutines or macros that run on the SMP 
and ACP. The manufacturer supplies a large library of such macros for 
vector data movement and vector arithmetic operations. It is also possible 
to write one's own macros for the SMP and ACP, but this must be done in 
assembly language. For problems that are highly vectorizable it is possible 
to obtain excellent performance using APCL and the manufacturer 
provided macros, but it is often necessary to do some assembly language 
programming in order to obtain peak performance. 

The SMP and the ACP operate independently so it is possible to 
overlap the movement of data between main memory and some subsections 
of cache with arithmetic operations on data in other subsections. APCL 
has the tools for doing so, and for synchronizing the two processors when 
that is necessary. 

It should be clear from this brief description that developing software 
for the ST-100 provides a somewhat greater challange than programming a 
conventional computer or even a supercomputer. However, the reward for 
this extra effort is a 100 Mflop machine which is economical enough so that 
it can dedicated to a small number of computationaly intensive problems. 

3. THE ABELIAN HIGGS M O D E L  

The first large-scale numerical simulation carried out with our ST-100 
was a study of the Abelian Higgs Model by Doug Toussaint and myself. (1) 
This model describes the interaction of charged scalar particles with the 
quantized electromagnetic field. 

In a well-known paper (2) Coleman and Weinberg showed that in the 
weak coupling limit, that is the one-loop approximation, this model has a 
first-order phase transition from a Coulomb phase in which the charged 
particles interact via the standard long-range electromagnetic interaction. 
and a Higgs phase in which the photon acquires a mass and the interac- 
tions among the charged particles are short-range. Such a first-order trans- 
ition plays a fundamental role in the inflationary scenario of the early 
universe. Of course in the early universe one is interested in the non- 
Abelian version of the model, but it seems reasonable that phenomena 
found in the Abelian model will be among those found in the more com- 
plex non-Abelian one. We, therefore, focused our attention on the 
Coulomb-Higgs phase transition in our study. 

The continuum Lagrangian for the Abelian Higgs model is 

1 
L = - 4g---- 7 FUVF~,~ + ( D U q ) )  * (D~,qg)  - -  m 2 Iq~l 2 _ ~. [q~l 4 (1) 
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where 

and 

FF, v = c~uA~ -- C3vA" 

D;go = (c3, - iA;)~o 

In order to carry out a numerical simulation it is necessary to put the 
model on a space-time lattice. There are, of course, many ways of doing so. 
Our choice for the lattice action is 

E 12 E E + ,iok 
z~ plaquettes links in 

plaquette 

-- ~ { l ~o i] [ q~ jl cos  [ arg(  q~ i ) -- arg(  qg j ) + O u ] } 
links 

i and j 

+ ~ (4+m2)lcPil2+ ~ 2)~pil 4 (2) 
sites sites 

where fl= 1/g;. The variables are a real number 0, the gauge field 
associated with each link on the lattice, and a complex number ~p, the 
Higgs field associated with each site. 

Note that we have used a noncompact formulation of the gauge field. 
The compact version has a strong coupling phase in which electric charge 
is confined, and we did not want this phase to interfere with our study of 
the Coulomb-Higgs phase transition in the strong coupling regime. In 
some of the earlier studies of this model the magnitude of the Higgs field 
was kept fixed. (3) It is believed that this does not change the universality 
class of the model, but we expect the theory to approach the continuum 
limit more rapidly when the magnitude of the Higgs field is retained as a 
dynamical variable as we have done. Simulations in which the magnitude 
of the Higgs field was allowed to fluctuate have been carried out by 
Munehisa ~4) and by Koutsoumbas. ~s~ Although considerable light was shed 
on the model in the earlier simulations, the order of the phase transition 
remained unclear. 

We used the Metropolis algorithm to generate field configurations for 
the simulation. Separate algorithms were needed to update the gauge 
variables and the magnitudes and phases of the Higgs field. By making use 
of skew periodic boundary conditions it was possible to write highly vec- 
torized code in which many sites or links of the lattice were updated 
simultaneously. The code was written in the array processor's high-level 
language, APCL, making extensive use of the vector subroutines for the 
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SMP and ACP provided by the manufacturer. The only assembly language 
routines which we wrote were a vector random number generator and 
routines for moving vectors with periodic boundary conditions between 
main memory and cache. The resulting code ran 150 to 200 times faster 
than a Fortran program performing the identical calculation on a 
VAX 11/750. The larger ratio was obtained for large lattices where the vec- 
tor length reached its maximum value of 4000. 

We studied the Coulomb-Higgs phase transition for a range of values 
of the gauge coupling/~ and the Higgs coupling 2. For all values for which 
the order is clear, this transition is first-order in agreement with expee- 
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tations from the work of Coleman and Weinberg./2] Our results are most 
striking for small values of fl and 2. In Fig. 2, I show the hysteresis loops 
for the plaquette and link energies and for (q~2) obtained by varying m 2 
for fl = .2 and 2 -- .05 on a 73 • 8 lattice. The existence of a large hysteresis 
loop is not, by itself, a proof of a first-order phase transition. It is necessary 
to show that the two branches of the hysteresis loop are well-defined 
metastable phases, in particular that the quantities measured on the two 
branches are independent of lattice size. This is demonstrated in Fig. 3 were 
I show the hysteresis loop for (q~2) at f l= .2  and 2 = . 0 5  on lattices of 
dimension 53 • 6, 73 • 8, and 93 • 10. It is clear that our results are indepen- 
dent of lattice size. The points with large error bars are values of m 2 for 
which the lattice tunneled from a metastable state to a stable state. The 
value shown is simply the average values in the two phases weighted by the 
time spent in each phase. 
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In order to make an accurate measurement of the critical mass at 
which the phase transition takes place, we initialized the lattice with half of 
it in the Coulomb phase and half in the Higgs phase. The system was then 
allowed to evolve until it was entirely in one phase. Clearly the critical 
value of m 2 lies between the smallest value for which the system becomes 
disordered and the largest value for which it becomes ordered. In making 
these measurements we used elongated lattices of dimension 73X 16 or 
73X 32, dividing the lattice along the longest dimension. In Fig. 4 I show 
the time history of (~02 } for a variety at values of m 2 at fi = .2 and ,t = .05. 
Using this approach we were able to make accurate measurements of the 
critical mass with a rather modest expenditure of computer time. A plot of 
the critical mass versus the gauge coupling constant for 2 = .05 is given in 
Fig. 5. 
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Once the critical mass is known it is straightforward to measure he 
discontinuity in any of the quantities of interest by making measurements 
at the critical point starting the system alternately in the ordered and dis- 
ordered states. As an example, the discontinuity in (q~2) is plotted in Fig. 6 
for .2 ~< fi ~< 1.0 and 2 = .05. 

As/? is increased the hysteresis loops become narrower and the discon- 
tinuities become smaller. An example is shown in Fig. 7. This result is to be 
expected since, as/~ -> o% the gauge degrees of freedom are frozen out and 
we obtain a lattice ~o 4 theory with a second-order phase transition. 
Similarly the hyseresis loops shrink as 2 increases for fixed /~. Again this 
behavior is expected since the effective potential will only have broadly 
spaced minima for small values of 2. Thus, it is difficult to study the 
Coulob-Higgs phase transition for large values of /~ and 2. However, 
within the domain that we have studied, our results point to a first-order 
phase transition. We cannot, of course, rule out the possibility of the phase 
transition becoming continuous for large, but finite, values of/~ and 2. 
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4. CHARGE DENSITY WAVE TRANSITION IN A 
QUASI -ONE-DIMENSIONAL SYSTEM 

A number of quasi-one-dimensional systems exhibit an anisotropic 
growth of correlations as their temperature is lowered. Examples are KCP 
and TTF-TCNQ,  which undergo metal-insulator Peirls transitions. These 
materials can be thought of as consisting of sets of one-dimensional chains 
which are weakly coupled to each other. Such systems can be studied 
experimentaly through scattering experiments and through the 
measurement of thermodynamic properties such as the specific heat. 
Scalapino, Toussaint, and I have recently used the ST-100 to simulate a 
model of such systems. (6) 

The model we have studied consists of an array of chains along which 
spinless fermions can hop. The fermions interact with each other via near- 
neighbor, intra- and inter-chain Coulomb interactions. The Hamiltonian of 
the system is given by 

= [ -  e? + �89 

V 1 1 + v(n~+f- - : ) (n~-- i )  + Vz(n~+e-�89189 (3) 

The chains run along the x axis. c + and c r are the creation and annhilation 
operators for fermions on the ith lattice site and n r = c~ + c~ is the occupation 
number at this site. To date we have studied the case of a half-filled band 
and repulsive interactions, although it is straightforward to simulate other 
fillings and attractive interactions. I report on data taken for a 10x 10 
array of chains with 30 sites per chain. The couplings are taken to be 
V x = 2.0, Vv = V~ = 0.2, and t = 1.0. Results for other couplings and other 
size systems are reported elsewhere. (6) 

The simulation is carried out using the canonical ensemble, so the 
average value of an operator A is given by 

tr[Ae ~n] 
( A )  = t r [e_~n ] (4) 

where fl is the inverse temperature. The imaginary time interval 0 ~ r ~< fl is 
divided into L subintervals of width Ar = filL, with L chosen large enough 
so that At- V~, At .  Vy, At.  V~, and Ar. t are all small parameters. At each 
imaginary time interval a complete set of intermediate states, in which the 
fermions are localized on individual lattice sites, is introduced. The sum 
over intermediate states is equivalent to sum over all possible con- 
figurations of the fermion world lines, and it is this sum that is carried out 
by Monte Carlo methods. Details of this approach are given in Ref. 7. The 
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well-known difficulties which ordinarily arise in the numerical simulation of 
three-dimensional fermion systems are absent in this problem because the 
fermions are restricted to remain on individual chains. 

As in the case of the Abelian-Higgs model, the ST-100 code was writ- 
ten in APCL primarily using the manufacturer's macro library. A special 
problem arose because of the need to use periodic boundary conditions in 
the space directions and antiperiodic boundary conditions in the 
imaginary-time direction for the fermions. These boundary conditions led 
to considerable indirect addressing in the data movement for which we 
wrote our own macros. The resulting code ran approximately 150 times 
faster than equivalent code on our VAX 11/750. 

We focused our attention on the specific heat, the structure function 

s(4) = r r -  1)> (5)  
r 

and the operators 

011 = ( (n~+.~- n~)2) (6) 

and 

1 2 0~ <�89 > (7) 

Oli and O1 measure the order along and between chains, respectively. Each 
takes on the value of 0.5 in a completely disordered state and 1.0 in an 
ordered one. 

The following picture emerges from our simulation. At high tem- 
peratures the system acts as a collection of independent one-dimensional 
chains. As the temperature is lowered the correlations along the chains 
increase, but not the correlations between the chains. At sufficiently low 
temperatures the chains begin to lock into each other, and a three-dimen- 
sional phase transition to a charge density state occurs. 

In Fig. 8 the specific heat is plotted as a function of temperature. The 
crosses and their associated error bars are our Monte Carlo results, and 
the solid curve is the N ~ oe extrapolation of the single-chain specific heat 
obtained by Bonner and Fisher (8) for Vx/t = 2.0. Notice how closely the 
specific heat follows the one-dimensional result at high temperatures. The 
sharp peak at T ~  0.44 is associated with the three-dimensional ordering of 
the chains. Further evidence for this picture is given in Fig. 9 where we plot 
Oil and O• for the same lattice and couplings. Notice that Oll, which 
measures correlations along the chains, increases steadily with a marked 
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break at the phase-transition point. On the other hand, O• which 
measures interchain correlations, remains near its uncorrelated value of 0.5 
until the temperature is lowered to the phase-transition point. 

In Fig. 10 the evolution of the structure function S(qx, qy, ~) is shown 
as a function of temperature. The data is again from a 30 x 10 x 10 lattice 
with V~ = 2.0 and V~ = V~ = 0.2. As the temperature is lowered charge den- 
sity wave correlations start to develop along the chains as can be seen from 
the increase in S(qx, q~, it) with qx. In Fig. 10(a), S(qx, qy, ~) is virtually 
flat in q_,,, indicating an absence of correlations among the chains. This 
corresponds to the lines in diffuse x ray scattering. As T approaches T~, 
interchain correlations develop rapidly, as is seen in Fig. 10(c), (d), Below 
T~ a Bragg spot develops in the x ray scattering associated with the spike 
at 4 =  (7c, ~c, rr). In Fig. 11, S(~, ~r, ~) is plotted as a function of temperature. 

Symmetry arguments indicate that the phase transition should be in 
the same universality class as the three-dimension Ising model, and our 
results are consistent with that prediction. 
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5. THE DECONFINING PHASE TRANSITION IN 
SU(3)  LATTICE GAUGE THEORY 

The largest simulation that we have undertaken to date with the ST- 
100 is a study of the deconfining phase transition in SU(3) lattice gauge 
theory. ~9) One of the central problems in lattice gauge theory is to extract 
the physical quantites of the continuum theory from calculations performed 
on lattices with finite spacings. This can only be done with confidence in 
the scaling regime of the theory where the renormalization group fl 
function is universal and calculable from perturbation theory. 

The deconfining phase transition is a particularly good tool for study- 
ing the continuum limit. Locating the critical temperature Tc is relatively 
easy because the system undergoes a sharp first-order phase transition. 
Further, we expect that thermodynamic quantites such as Tc can be studied 
on smaller lattices than correlation functions at the same value of the lat- 
tice coupling g. 

The transition temperature is a renormalization group invariant which 
depends on the lattice coupling constant through the relation 

T~ = const a exp - f l - ~ ]  (8) 
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Fig. 12. Scatter plots for the Polyakov loop on a 19 3 x 14 lattice. The plots show the system 
(a) in the confined phase, (b) near the transition point with the confined and deconfined 
phases coexisting, and (c) in the deconfined phase. 
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F i g .  1 2  (continued) 

where a is the lattice spacing and/~ has the weak coupling expansion 

_ f l ( g ) = b o g 3  + bl gS + .. .  (9) 

with bo = l 1/16~ 2, b~ = 102/(167r2) 2. Thus, the behavior of To is known for 
small values of g. Monte Carlo measurements of this quantity can be used 
to study the approach to the continuum limit and to determine the /~ 
function. 

The order parameter of the deconfining phase transition P is the 
spatial average of the Polyakov loop 

/7 t 

P(x)  = tr [ l  U~(s t) (10) 
t = l  

where U,(2, t) is an SU(3) matrix along a timelike link at spatial location 
and time t. n, is the number of time slices on the lattice�9 In addition to the 
local gauge symmetry, the theory has a global Z(3) invariance. Under the 
action of this symmetry the order parameter transforms as P -4 zP, where z 
is an dement of Z(3). The expectation value of the Polyakov loop vanishes 
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Fig. 13. (a-c) The same data  as in Fig. 12. Five successive values of P have been averaged to 
reduce high-frequency scatter. 
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Fig. 13 (continued) 

in the confined phase. In the deconfined phase, the Z(3) symmetry is 
broken and the ground state is three-fold degenerate. 

The calculations were carried out on Cyber 205 supercomputers and 
on the ST-100. The quasi-heatbath algorithm ~1~ was used on the former 
and the Metropolis algorithm on the latter. The fact that we obtained iden- 
tical results from two different machines running different algorithms added 
to our confidence in the results. 

Unlike the two previous problems that I have described, extensive use 
of assembly language was made in preparing the ST-100 code. Because of 
the size of the calculation this extra effort seemed warranted to obtain 
maximum performance from the machine. The ST-100 is very well-suited to 
the problem of lattice gauge theory. The even balance between adders and 
multipliers makes it especially efficient for complex arithmetic, and the 
three-stage pipelines make the multiplication of SU(3) matrices particularly 
simple. The resulting code updated a link in 105 gs. This was an average 
time which included 15 Metropolis hits per link, measurements at every 
fourth sweep of the lattice, and reunitarization after every second sweep. 
For the larger lattices, the SU(3) matrices were stored in main memory in 
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16-bit precision. Results with this precision agreed with those using full 
precision to within statistical errors. Although the ST-100 was 
approximately four times slower than the Cyber 205, it was able to con- 
tribute to this calculation on an equal footing because substantially more 
running time was available on it. This of course is the great advantage of a 
dedicated computer. 

The number of time slices n, on the lattice is related to the temperature 
through T =  a.n, .  To search for the critical point, we study a lattice with 
fixed nt and vary the coupling constant g. The phase transition can be 
identified in a variety of ways. If one makes a scatter plot of the values of 
the Polyakov loop over a number of independent field configurations, then 
in the confined phase the points will be symmetrically distributed about 
~tP = ~P  = 0.0. In the confined phase if one runs for sufficiently long times 
on a finite lattice, then three lobes will develop on the scatter plot 
corresponding to the three degenerate ground states in which [P[ v a 0.0. On 
the large lattices that we have studied tunneling is difficult, and all three 
lobes are not always filled in. However, it is still straightforward to identify 
the deconfined phase. As an example, scatter plots for the largest lattice we 
have studied to date, 193 x 14, are shown in Fig. 12. Figure 12(a) shows the 
system in the confined phase; (b) shows it near the transition point with 
the confined and deconfined phases coexisting, and (c) shows it in the 
deconfined phase. The plots can be clarified by averaging the Polyakov 
loop over several successive measurements to average out high-frequency 
scatter in the data. Figure 13 shows the same data as Fig. 12 with five suc- 
cessive points having been averaged. 

Estimates of Tc can be made from visual inspection of the scatter plots 
and plots of the magnitude of the order parameter versus sweep number. A 
quantitative measurement of the degree of confinement is given by the 
"triality" 

H =  (cos(3 arg P ) )  (11) 

Here arg P is the phase of the order parameter, and the brackets indicate 
an average over Monte Carlo samples. Clearly H vanishes in the confined 
phase and is one in the deconfined phase for an infinite spatial lattice. We 
found that all three measures of Tc gave consistent values. 

Our main results are shown in Fig. 14 where the ratio of the measured 
values of Tc to the prediction of the two-loop /~ function is plotted. Our 
new results are for n , = 8 ,  10, 12, and 14. For completeness, points at 
n,= 2, 4, and 6 from an earlier work (1l) are included. Notice that after the 
apparent early scaling between 5.1 < 6/g2< 5.7 there is strong violation of 
scaling for 6.15 < 6/g 2 < 6.1. Asymptotic scaling is observed in this study for 
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Fig. 14. The ratio of the measured values of T c to the prediction of the two-loop fl function. 
Our new results are for n, =8, 10, 12, and 14. Points at n~ =2, 4, and 6 are taken from Ref. 11. 
Asymptotic scaling sets in for 6/g2> 6.15. 

6.15 < 6/g2< 6.50. Thus, the onset of scaling is at a much weaker coupling 
than early optimistic expectations. This means that either a significant 
increase in computer  power or a substantial improvement  on the Wilson 
action is needed for practical calculations of hadronic properties. However, 
our work does indicate that continuum quantites in pure SU(3) lattice 
gauge theory can be obtained from Monte Carlo calculations with 
6/g2> 6.15 on sufficiently large lattices. 

6. C O N C L U S I O N  

I hope that it is clear from this brief survey that the ST-100 array 
processor is a powerful tool for carrying out large-scale numerical 
simulations. In addition to the work reported on here, the ST-100 has been 
used to study U(1) lattice gauge theory and the quantum Heisenberg 
model. Code is presently being developed to study the three-dimensional 
Hubbard  model; to include phonons in the quasi-one-dimensional fermion 
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model  described above;  to study alternatives to the Wilson action in SU(3) 
lattice gauge theory;  and to include fermion in the U(1) and SU(3) lattice 
gauge theory codes. 
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